A Gibbsian Kohonen Network for Online Arabic Character Recognition
نویسندگان
چکیده
The purpose of this study is to investigate handwritten online character recognition by Kohonen neural networks which learn class conditional Gibbs densities from training samples. The characters are represented by histograms (empirical distributions) of features. The Kohonen network learning algorithm implements a gradient ascent which maximizes an entropy criterion under constraints. Using a database of handwritten online Arabic characters produced without constraints by a large number of writers, we conducted extensive experiments which show the advantage of this Gibbsian Kohonen network over other classifiers such as a regular Kohonen neural network and a Gibbsian Bayes classifier.
منابع مشابه
Combination of Pruned Kohonen Maps for On-line Arabic Characters Recognition
The purpose of this study is to investigate a method for high performance on-line Arabic characters recognition. This method is based on the use of Kohonen maps and their corresponding confusion matrices which serve to prune them of error-causing nodes, and to combine them consequently. We use two Kohonen maps obtained using two distinct character representations, namely, Fourier descriptors an...
متن کاملMaximum Entropy Gibbs Density Modeling for Pattern Classification
Recent studies have shown that the Gibbs density function is a good model for visual patterns and that its parameters can be learned from pattern category training data by a gradient algorithm optimizing a constrained entropy criterion. These studies represented each pattern category by a single density. However, the patterns in a category can be so complex as to require a representation spread...
متن کاملOn-line recognition of handwritten Arabic characters using a Kohonen neural network
Neural networks have been applied to various pattern classification and recognition problems for their learning ability, discrimination power, and generalization ability. The neural network most referenced in the pattern recognition literature are the multi-layer perceptron, the Kohonen associative memory and the Capenter-Grossberg ART network. The Kohonen memory runs an unsupervised clustering...
متن کاملApplication of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results
Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...
متن کاملApplication of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results
Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...
متن کامل